
Noname manuscript No.
(will be inserted by the editor)

A MIP based approach for International Timetabling
Competation 2019

Dennis S. Holm? · Rasmus Ø. Mikkelsen? ·
Matias Sørensen · Thomas R. Stidsen

Received: date / Accepted: date

Keywords Mixed Integer Programming · Matheuristics · Fix and Optimize ·
Conflict graphs · University Timetabling · International Timetabling Competition
2019

1 Introduction
This summary paper was written as a part of the submission for the International
Timetabling Competition 2019 (ITC2019). It aims to give an overview description
of the algorithm used to solve the ITC2019 problem instances. Since the paper is
limited to 4 pages, the description cannot be very comprehensive. The algorithm is
divided into different parts. First part is a reduction algorithm where unnecessary
information in the data is removed. It is followed up by two initial solution algo-
rithms and a Fix-and-Optimize matheuristic. The initial solution algorithms and
Fix-and-Optimize algorithms all depend on a Mixed Integer Programming (MIP)
formulation, which will also be described briefly. Finally the computational setup
is presented as it defines the resulting algorithm.

? First Author

Dennis S. Holm?

Akademivej
Building 358
2800 Kgs. Lyngby
E-mail: dsho@dtu.dk

Rasmus Ø. Mikkelsen?
Akademivej
Building 358
2800 Kgs. Lyngby
E-mail: rasmi@dtu.dk

Matias Sørensen
E-mail: sorensen.matias@gmail.com

Thomas R. Stidsen
Akademivej
Building 358
2800 Kgs. Lyngby
Tel.: +45 45254449
E-mail: thst@dtu.dk

2

2 Reducing the problems
The reduction of the problems concern two parts. One part considers the removal
of times/rooms of classes that are never allowed in a feasible solution. The other
part considers the removal of distribution constraints that are dominated by other
distribution constraints.

2.1 Reducing times/rooms
This part is very useful for the MIP because it reduces the number of variables.
Consider a graph where each vertex corresponds to a class-time pair. To get a
valid class-time assignment in the problem, a vertex must be chosen for each of
the classes. Now add an edge between two vertices if the two pairs cannot both
be chosen in a valid solution. That could happen if a hard distribution constraint
states, that the times of the two classes are not allowed simultaneously or if the
two vertices represent the same class. Likewise a conflict graph of class-room pairs
can be constructed.
Now consider a conflict graph G described as above and consider the sets of vertices
V (ci) that represents class ci. If |V (ci)| = 1 for a ci we denote the vertex as fixed.
This means that any neighbour of a fixed vertex cannot be chosen in a valid
solution, thus such vertices can be removed from G.
Consider a clique C in the graph. C describes that only one of the vertices V (C)
can be chosen. If V (ci) ⊂ V (C) for a specific ci then the vertices of V (C) \ V (ci)
can be removed from G. By reducing the graph G to G′ with the above methods
one might find vertices that are fixed in G′ but not in G. It is therefore important
to keep reducing G′ until no more reductions can be made.

2.2 Reducing distribution constraints
Redundant distribution constraints: A constraint that consider at most one class,
a soft constraint with 0 penalty, or cannot be violated by the classes it consider.
Dominated distribution constraints: A distribution constraint (hard or soft) d1 is
said to be dominated by a hard distribution constraint of equal type d2 if the
classes of d1 is a subset of the classes of d2.
Redundant and dominated distribution constraints are removed from the problem.

3 MIP
The Mixed Integer Programming formulation consider a binary decision variable
xc,t,r that is equal to 1 if a class c is scheduled at time t in room r and 0 otherwise.
If the problem includes student sectioning the MIP formulation also consider the
binary variable Es,c which is equal to 1 if student s is attending class c and 0
otherwise.
The decision variable xc,t,r leads to auxiliary variables yc,t, zc,d and wc,r, which
respectively consider the assignment of time t, day d or room r for a class c. Note
that the variables yc,t and wc,r are represented by vertices in the conflict graphs
presented in section 2. The distribution constraints used to define the edges of a
conflict graph are modelled by a clique cover of the conflicts graphs. This is the
modelling of most of the hard distribution constraints. Note that SameAttendees
requires an additional conflict graph on xc,t,r when the times by themselves are
not overlapping but the room assignments violate the constraint. Conflict graph
are created for the soft distribution constraints as well. Here the edges have a cost
corresponding to the distribution constraint(s) that created the edge. Each edge
can be used as a constraint in the model. But to lower the amount of constraints

3

it is better to divide the graph into subgraphs where all edges have equal cost and
then find a star cover of each graph. Each star is added as a constraint to the
model.
The distribution constraints MaxDays, MaxDayLoad, MaxBreaks and MaxBlock
are modelled in a more advanced way.
Student sectioning is performed like SameAttendees except that the cost of overlap
between courses c1 and c2 is related to Es,c1 and Es,c2 .

4 Initial solution
An initial solution is constructed by two simple constructive matheuristics. The
constructive heuristics split the problem into two or three parts respectively, where
the parts are solved one followed by the other.

Algorithm 1 Two-Stage Constructive Algorithm (2SCA)
1: assign times and rooms to classes
2: assign students to classes
3: return assignments

For the 2SCA algorithm a MIP is defined with the only objective being the number
of unassigned classes. When a feasible schedule is found, the schedule is given to
the original MIP which is solved to assign students to classes.

Algorithm 2 Three-Stage Constructive Algorithm (3SCA)
1: assign times to classes
2: try to assign rooms to classes
3: while assignment of rooms was not possible do
4: find a new assignment of times to classes
5: try to assign rooms to classes
6: end while
7: assign students to classes
8: return assignments

In the 3SCA algorithm a MIP that considers only the assignment of times is
solved first. The time-assignment is then given to another MIP that considers the
assignment of rooms. If there is no feasible room-assignment to the given time-
assignment another time-assignment will be found. When a feasible time and room
assignment has been found the schedule is given to a MIP that considers student
sectioning.

5 Fix-and-Optimize
To improve the solutions found in section 4 we use a Fix-and-Optimize matheuris-
tic. The Fix-and-Optimize splits the decision variables into two sets F and U . We
then consider the subproblem where the variables of F are fixed and we optimize
the subproblem. The results are strongly dependent on the way the sets are cho-
sen. If a large set U is chosen, the model will be too complex, on the other hand
if U is too small there will be no improvement.

When choosing U we consider a neighbourhood of courses. That is the decision
variable xc,t,r (and related auxiliary variables) for all classes that are part of a

4

given set of courses. As the instances vary greatly in difficulty, we choose the size
of U to be 25% of class assignments as a base line.

Algorithm 3 Pseudo code for Fix-and-Optimize
1: MIP: Set solution sol∗

2: MIP: Fix all variables to current value
3: while time do
4: U = GetVariablesToUnfix()
5: MIP: Unfix all U
6: solnew = Solve MIP
7: if solnew is improving then
8: MIP: Set soltuion solnew

9: end if
10: MIP: Fix all variables to current value
11: end while

The pseudo code of Fix-and-Optimize is shown in algorithm 3. The solution sol∗ is
the warm start solution, that could be the initial, best known or any other solution.
The set of variables U is determined by function GetVariablesToUnfix().

5.1 Dynamically updating parameters
The goal of Fix-and-Optimize is to find a balance between the MIP complexity
and the availability and ease of finding improving solutions. On smaller and easier
instances it is preferable to unfix in a more aggressive manner, while a more
conservative strategy should be used for more difficult cases. The correct strategy
is difficult to gauge a priori and therefore the parameters of Fix-and-Optimize are
updated dynamically through the search.

6 Computational setup
When a data instance is received we start by reducing the file as described in
section 2, this gives a reduced data instance that is used to construct the MIP
described in section 3. The 3SCA algorithm described in section 4 is run without
considering soft distribution constraints to find a pool of initial solutions. Addition-
ally the 2SCA is also run. The MIP and a number of Fix-and-Optimize algorithms
are run in parallel. The MIP has focus on improving the lower bound while the
Fix-and-Optimize algorithms produce new solutions that are passed to the MIP
to help reduce the branch and bound tree. The Fix-and-Optimize algorithms focus
on separate neighbourhoods and regularly reset to the best known solution, such
that none are “left behind”. If enough time passes with no improvement in best
known solution, the Fix-and-Optimize algorithms begin to diversify; each search
starts from a new initial solution (from the 3SCA algorithm), no longer resets to
the best known solution and considers all available neighbourhoods. This contin-
ues until the best known solution is improved, where after the Fix-and-Optimize
algorithms revert to their normal strategy.
For instances where the number of students exceeds 30.000, we start an additional
process where a specialized MIP is defined that applies student sectioning to fixed
timetables. The timetables are produced by the 3SCA algorithm and a variant
of the Fix-and-Optimize algorithm that is set up to produce timetables without
considering the students.

